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Abstract 

 

The boundary layer unsteady flow along a continuously stretching cylinder 

immersed in a viscous and incompressible fluid is studied. A variable thermal conductivity 

is considered. The governing partial boundary layer equations in cylindrical form are first 

transformed into ordinary differential equations These equations are solved analytically 

using the optimal modifiedHomotopyAsymptotic method in order to get a closed form 

solution for the dimensionless functions f, and θ. 
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1.  Introduction 
The boundary layer flow and heat transfer of stretching flat plates or cylinders are very important in 

fiber technology and extrusion processes. The production of sheeting material arises in a number of 

industrial manufacturing processes and includes both metal and polymer sheets. We have many 

applications such as the cooling of an infinite metallic plate in a cooling bath, the boundary layer along 

material handling conveyers, the aerodynamic extrusion of plastic sheets, the boundary layer along a 

liquid film in condensation processes, paper production, glass blowing, metal spinning, drawing plastic 

films, and polymer extrusion. The quality of the final product depends on the rate of heat transfer at the 

stretching surface .Sakiadis [1]was the first to consider the boundary layer flow on a moving 

continuous solid surface. Crane [2] extended this concept to a stretching sheet with linearly varying 

surface speed and presented an exact analytical solution for the steady two-dimensional stretching of a 

surface in a quiescent fluid. Then many authors considered various aspects of this problem and 

obtained similarity solutions .A similarity solution is one in which the number of independent variables 

is reduced by at least one, usually by a coordinate transformation. The idea is analogous to dimensional 

analysis, but instead of parameters the coordinates ζthemselves are collapsed into dimensionless groups 

that scale the velocities (White, [15]). The boundary layer flow due to a stretching surface in a 

quiescent viscous and incompressible fluid when the buoyancy forces are taken into consideration have 

been considered by Daskalakis [8], Chen [11,12], Lin and Chen [10], Ali [13], Partha et al.[14], and 

Ishak et al. [5,8]. Lin and Shih [3,4], considered the boundary layer and heat transfer along horizontally 

and vertically moving cylinders with constant velocity and found that the similarity solutions could not 

be obtained due to the curvature effect of the cylinder . The case of stretching sheet is studied by 

Grubka and Bobba [5] and Ali [9], this work is extended by Ishak and Nazzar [23], to the case of 
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stretching cylinder . In this study we consider a stretching cylinder in an unsteady flow with variable 

thermal conductivity, and have been solved analytically. 

 

 

2.  Formulation of the Problem 
Consider an unsteady, laminar, incompressible, and viscous flow on a continuous stretching cylinder as 

in figure (1).It is assumed that the stretching velocity U(x)= (a x) \ (1-γt), the surface temperature Tw(x) 

= (b x) \ (1-γt),where a, b, and γ are constants and the thermal conductivity θ) ζ (1  +∝=∝ ∞ . The x- 

axis and y- axis are taken as shown in fig (1).The conservation equations for this case are:- 
 

Figure 1: Physical Problem 
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Where u and vare velocity components in the x andy directions, respectively, T is the fluid 

temperature and α is the thermal diffusivity.The continuity equation can be satisfied by introducing a 

stream function ψ, such that 
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corresponding ordinary differential equations by the following transformations (Mahmoud and merkin 

[6],Ishak [20] ) :- 
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The transformed ordinary differential equations are:- 
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Where (pr) = (ν\ ∞α ) is the prandtl number 

Subjected to the boundary conditions:- 

f(0)=0, f '(0)=1, θ(0)=1, 

f ' 0)(0,)( →∞→∞ θ  (8) 

Where primes denotes differentiation with respect to η, and ρ denotes the curvature parameter 

defined as :- 
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The physical quantities of interest are the skin friction coefficient Cf and the local Nusselt 

number Nux, which are defined as :- 
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Where the surface shear stress τw and the surface heat flux qw are given by : 
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With µ and k being the dynamic viscosity and the thermal conductivity, respectively .Using the 

similarity variables (5) we get :- 

(0)(0)
2
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Where Rex=Ux\  is the local Reynolds number. 
 

 

3.  Optimal Homotopy Asymptotic Method(OHAM) 
Consider a differential equation in the form: 

L(u(t)) + N(u(t)) + g(t) = 0, B(u) = 0 (13) 

Where L is a linear operator, t denotes an independent variable, u(t) is an unknown function, 

g(t) is a known function, N(u (t)) is a nonlinear operator and B is a boundary operator. By means of 

OHAM a family of equations is constructed: 

(1 - p)[L(F(t,p)) + g(t)] - H(p)[L(F(t,p)) + g(t) + N(F(t,p)) = 0, B(F(t,p)) = 0 (14) 

where p ∈  [0,1] is an embedding parameter, H (p) is a nonzero auxiliary function for p ≠ 0 and 

H(0)=0, F(t,p) is an unknown function. Obviously, when p = 0, and p = 1, we have:: 

F (t, 0) = u0 (t), F(t, 1) = u(t) (15) 

Then, as p increases from 0 to 1, the solution F (t, p) varies from u0 (t) to the solution u (t), 

where u0 (t) is obtained from (14) for p=0 : 

L(u0 (t))+g(t)=0, B (u0) = 0 (16) 

The auxiliary function is chosen in the form; 

H (p) = p C1+p
2
 C2 +….. (17) 

Where C1, C2,…… are constants which can be determined later. 

Expanding F(t,p) in a series with respect to p, we get: 
k

k
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Substituting (18) in (14),collecting the same powers of p, and equating each coefficient of p to 

zero, we obtain a set of differential equations with boundary conditions. Solving differential equations 

with boundary conditions 

u0 (t), u1 (t,C1),u2 (t,C2),… … .. is obtained . Generally the solution of (13) can be determined 

in the form; 
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Substituting (19) in (13) we get the following residual: 

R(t,Ci) = L (u
~(m)

 (t,Ci)) + g (t) + N(u
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 (t,Ci)) (20) 

If R(t,Ci)=0 then u
~(m)

 (t,Ci) is much closed to the exact solution to minimizing the occurred 

error for nonlinear problem, let; 
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Where a and b are values depending on the given problem. The unknown constants Ci (i = 1, 2, 

… … .., m) can be determined from the conditions: 
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With these known constants, the approximate solution (of order m) (19) is well determined. 

 

 

4.  Solution using OHAM 
Applying (14) into (8),(9) and (10) we get: 
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Where primes denote differentiation with respect to η. 

Since the first two equations in (23) are identical, then we take f,g, ϕ , H1 H2 and H3 as 
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Collecting same powers of p and solving the resulted set of differential equations we obtain; 
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Where: A =
a

γ
 

 

 

5.  Results 
Computations have been carried out for various values of the dynamic parameter (γ),the curvature 

parameter (ρ), the thermal conductivity (ζ) and the Prandtl number (pr). 

Results for the skin friction f''(0) are computed for various values of the dynamic parameter (γ) 
and the curvature parameter (ρ) in Table (1). 
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Table 1: Variation of f ''(0) for a various values of (ρ) at various values of (γ) 
 

   1 

0.0 -1.00000 -1.24337 -1.37109 

0.5 -1.17232 -1.38097 -1.4701 

1.0 -1.32095 -1.49819 -1.55552 

 

Results for the temperature surface gradient -θ'(0) are computed for various values of the 

dynamic parameters (γ), (A), Prandtl number (Pr), the thermal conductivity (ζ) and the curvature 

parameter (ρ) in Tables (2) and (3). 
 
Table 2: Variation of - θ' (0) for a various values of ρ, A, ζ and γ for pr =1 

 

    
- θ' (0) 

1 0 0 0.6 -0.92740 

1 0 0 0.8 -0.86814 

1 0 0 1 -0.59761 

1 0 0.5 0.6 -1.13285 

1 0 0.5 0.8 -1.01457 

1 0 0.5 1 -0.96364 

1 0 1 0.6 -1.90002 

1 0 1 0.8 -1.4365 

1 0 1 1 -1.24945 

1 1 0 0.6 -1.22661 

1 1 0 0.8 -1.0716 

1 1 0 1 -0.839173 

1 1 0.5 0.6 -1.45692 

1 1 0.5 0.8 -1.19302 

1 1 0.5 1 -1.03376 

1 1 1 0.6 -2.25124 

1 1 1 0.8 -1.70575 

1 1 1 1 -1.07037 

 
Table 3: Variation of - θ' (0) for a various values of ρ, A, ζ and γ for pr =2 

 

    
- θ' (0) 

2 0 0 0.6 -1.04767 

2 0 0 0.8 -0.954924 

2 0 0 1 -0.926166 

2 0 0.5 0.6 -1.60857 

2 0 0.5 0.8 -1.28896 

2 0 0.5 1 -1.12618 

2 0 1 0.6 -2.49076 

2 0 1 0.8 -1.811 

2 0 1 1 -1.70336 

2 1 0 0.6 -1.29859 

2 1 0 0.8 -1.12015 

2 1 0 1 -0.971603 

2 1 0.5 0.6 -1.87621 

2 1 0.5 0.8 -1.43535 

2 1 0.5 1 -1.2801 

2 1 1 0.6 -2.6365 

2 1 1 0.8 -2.08042 

2 1 1 1 -0.885375 
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The variation of the transverse velocity (f) with the dimensionless variable (η) for different 

values of the dynamic parameter (γ) and the curvature parameter (ρ)is shown in figures (2-4). The 

variation of the horizontal velocity (f ') with the dimensionless variable (η) for different values of the 

dynamic parameter (γ) and the curvature parameter (ρ)is shown in figures (5-7). The variation of 

temperature θ(η) with the dimensionless variable (η) for different values of the dynamic parameters (γ), 
(A), the prandtl number (Pr), the thermal conductivity (ζ) and the curvature parameter (ρ)is shown in 

figures (8-15). 
 

Figure 2: Variation of the transverse velocity (f) for different values of ρ= 0, 0.5, 1 at γ= 0, A = 0 
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Figure 3: Variation of the transverse velocity (f) for different values of ρ= 0, 0.5, 1 at γ = 0.5, A = 
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Figure 4: Variation of the transverse velocity (f) for different values of ρ= 0, 0.5, 1 at γ= 1, A = 1 
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Figure 5: Variation of the horisontal velocity (f’) for different values of ρ= 0, 0.5, 1 at γ= 0, A = 0 
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Figure 6: Variation of the horisontal velocity (f’) for different values of ρ= 0, 0.5, 1 at γ= 0.5, A = 0.5 

 

0 1 2 3 4 5 6 7 8 9 10
�

0.2

0.4

0.6

0.8

1.
f
����

 
 

 
 



194 M.Y. Akl 

Figure 7: Variation of the horisontal velocity (f’) for different values of ρ = 0, 0.5, 1 at γ= 1, A = 1 
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Figure 8: Variation of the temperature (θ ) for different values of ρ= 0, 0.5, 1 at γ= 0, A = 0, ξ=0, pr = 1 
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Figure 9: Variation of the temperature (θ ) for different values of ρ = 0, 0.5, 1 at γ= 0, A = 0 , ξ= 0.2, pr =1 
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Figure 10: Variation of the temperature (θ ) for different values of ρ= 0, 0.5, 1 at γ= 1, A = 1 , ξ= 0, pr =1 
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Figure 11: Variation of the temperature (θ ) for different values of ρ= 0, 0.5, 1 at γ= 1, A = 1, ξ= 0.2, pr =1 
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Figure 12: Variation of the temperature (θ ) for different values of ρ= 0, 0.5, 1 at γ = 0, A = 0, ξ= 0.1, pr =1 
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Figure 13: Variation of the temperature (θ ) for different values of ρ = 0, 0.5, 1 at γ = 0, A = 0, ξ= 0.1, pr 

=2 
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Figure 14: Variation of the temperature (θ ) for different values of ρ= 0, 0.5, 1 at γ= 1, A = 1, ξ= 0.1, pr =1 
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Figure 15: Variation of the temperature (θ ) for different values of ρ= 0, 0.5, 1 at γ = 1, A = 1, ξ= 0.1, pr =2 
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6.  Discussions 
The influence of thedynamic parameters (γ  (A), the curvature parameter (ρ), the thermal conductivity 

(ζ) and the Prandtl number (Pr) on the dimensionless velocities (f),(f '), the skin friction coefficient f 

''(0), the heat surface gradient - θ'(0) and the dimensionless heat (θ) are shown in tables (1,2) and 

figures (2-15) . 

Table (1) shows that the skin friction coefficient f ''(0) for all values of ρ and γ is negative 

which means the surface exerts a drag force on the fluid. Since equations (6) and (7) are uncouppled, 

then the Prandtl number does not affect on f ''(0). The absolute values of f ''(0) for all values of γ and 

ρare greater than the values of f ''(0) when ρ = 0, which means the skin friction coefficient for the 

cylinder is greater than the plate.Also it is noticed that the skin friction f ''[0] increases as the curvature 

parameter (ρ) increases for all values of the dynamic parameter (γ and then the skin friction decreases 

as the curvature parameter (ρ) increases for all values of the dynamic parameter (γ Table(2, 3) show the 

heat transfer rate – θ'(0) increases as the curvature parameter (ρ) increases which means also the heat 

transfer rate at the surface for cylinder is greater than the heat transfer rate at the surface for the plate. 

The heat transfer rate – θ'(0) increases as the dynamic parameter (γ increases . The heat transfer rate – 

θ'(0) decreases as the thermal conductivity ( increases . Figures (2-4) show the transverse velocity 

profiles for various values of the curvature parameter (ρ), Figures (5-7) show the horisontal velocity 

profiles for various values of the curvature parameter (ρ). Figures (6-15) show the heat (θ) profiles for 

various values of the curvature parameter (ρ), the thermal conductivity (ζ) and the Prandtl number (Pr), 

it is clear that the heat increases as the curvature parameter increases for various values of the dynamic 

parameter (γ Finally figures (2-15) show the satisfaction of initial boundary conditions which support 

the validity of the solution. 

 

 

Conclusion 
Optimal Homotopy Analysis Method has been applied to study the effects of the dynamic parameters 

(γ) and (A),the curvature parameter (ρ), the thermal conductivity (ζ) and the prandtl number (pr) on the 

velocity and the heat of the boundary layer unsteady flow. It is found:- 

1. Closed form solutions for (f) and (θ) are obtained. 

2. It is found that there are considerable effects for these parameters on the velocity and 

temperature. 
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